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Nondestructive Pavement Evaluation Using Finite Element Analysis 

Based Soft Computing Models 
 

Introduction 
Evaluating structural condition of existing, in-service pavements constitutes annually a major part of the 

maintenance and rehabilitation activities undertaken by State Highway Agencies (SHAs). Accurate 

estimation of pavement geometry and layer material properties through the use of proper 

nondestructive testing and sensor technologies is very important for evaluating pavement’s structural 

condition, its remaining life for maintenance and rehabilitation purposes, and for properly incorporating 

life cycle cost considerations into an up to date, improved Pavement Management System. For this 

purpose, pavement deflection basins gathered from the nondestructive Falling Weight Deflectometer 

(FWD) test data are commonly used to evaluate pavement structural conditions. Development of an 

innovative methodology, called SOFTSYS, Soft Computing Based Pavement and Geomaterial System 

Analyzer, is proposed here as an original way of interpreting the results of FWD tests for full-depth and 

conventional flexible pavements with the purpose of determining pavement layer properties as well as 

the layer thicknesses from FWD data without the need for pavement coring. Since the layer thickness 

information plays a crucial role in FWD data back calculation and remaining pavement life estimation, 

the outstanding contribution of SOFTSYS will be in the reliable estimation of pavement layer thicknesses 

in addition to their stiffness properties. Using only FWD test results (i.e. deflections) as inputs, SOFTSYS 

will calculate all the necessary properties for pavement evaluation.  

Findings 
This study focused first on the use of ANN pavement structural models developed with the results of the 

ILLI-PAVE finite element (FE) program to predict pavement deflections under FWD loading. Then an 

innovative soft computing application, referred to herein as SOFTSYS, was  introduced for the hybrid use 

of Genetic Algorithms (GAs) and artificial neural networks (ANNs) to estimate pavement layer properties 

including the hot mix asphalt concrete (HMA) thickness from only the FWD test data collected on full-

depth asphalt pavements built on both natural and lime modified subgrades.  

The performances of the developed surrogate ANN structural models (forward models) were well above 

satisfactory; i.e., these ANN models could be used in lieu of finite element analyses for the quick and 

accurate predictions of the surface deflections and the critical responses of all types of full-depth flexible 
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pavements found/constructed in Illinois, Indiana and Ohio. The results of pavement structural modeling 

with the ILLI-PAVE FE program proved that improvements due to the constructed lime stabilized 

subgrade soil layer had to be captured separately in the analyses since significant differences were 

found between the critical pavement responses of full-depth pavements on unmodified subgrade and 

lime stabilized subgrade.  Therefore, for correctly modeling the pavement response and behavior with 

the lime stabilized subgrade soil layer, separate forward analysis approaches were developed to 

accurately predict pavement deflection profiles and pavement critical responses under FWD loading. 

Thickness variability was a real issue in the field, and destructive pavement coring was not always a 

viable option to determine layer thickness. The SOFTSYS, Soft Computing Based Pavement and 

Geomaterial System Analyzer, framework developed as a software tool was used successfully to 

backcalculate the layer moduli and the HMA thicknesses of the full-depth asphalt pavements analyzed.  

SOFTSYS was shown to work effectively with the synthetic data obtained from ILLI-PAVE FE solutions. 

The very promising SOFTSYS results obtained indicated average absolute errors (AAEs) on the order of 

6% and 9% for the HMA thickness estimation for full depth pavements and full depth pavements built on 

lime stabilized soil layers.   

The field validations of SOFTSYS with Staley Road FWD data in Illinois and LTPP data in Indiana also 

produced meaningful results. Higher deflection values correlated well with the thinner backcalculated 

HMA thicknesses. In addition, the thickness data obtained from GPR testing matched reasonably well 

with the SOFTSYS results although in some locations the maximum difference between the two results 

was up to 3 in. The variations of HMA thickness observed were attributed to variations in the FWD data. 

The data obtained from GPR also indicated that the constructed HMA thicknesses were generally 

greater than the design thickness (by approximately 1 in.) although there were sections that were even 

thinner than the design thickness. The thickness data from the field were deemed to be essential to 

calibrate the GPR test results.  In addition, the validations of SOFTSYS with LTPP design data proved that 

proper calibration of parameters is a must to obtain reliable results from the SOFTSYS methodology. 

Recommendations 
SOFTSYS was presented to be reliable, accurate and quick evaluation tool for both pavements and 

geomaterials. Although it has many capabilities, it needs to be used with caution since SOFTSYS requires 

many parameters to be tuned and selected carefully. In addition, its full potential needs to be further 

investigated and developed in future research projects.  
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CHAPTER 1.  INTRODUCTION 

1.1 Background and motivation 

Evaluating structural condition of existing, in-service pavements constitutes 

annually a major part of the maintenance and rehabilitation activities undertaken by State 

Highway Agencies (SHAs).  Accurate estimation of pavement geometry and layer 

material properties through the use of proper nondestructive testing and sensor 

technologies is very important for evaluating pavement’s structural condition and 

determining options for maintenance and rehabilitation. For this purpose, pavement 

deflection basins gathered from the nondestructive Falling Weight Deflectometer (FWD) 

test data are commonly used to evaluate pavement structural conditions. Often these 

interpretations of FWD test data also require the layer thicknesses of the tested 

pavements for backcalculation of the pavement layer properties. With the recent 

AASHTO move towards adopting mechanistic based pavement analysis and design 

concepts and procedures nationwide, interpretations of FWD data from routine 

nondestructive testing currently demands the use of advanced multi-layered and finite 

element (FE) solutions for proper analyses of pavement structural conditions.  Often 

these interpretations of FWD test data also require the layer thicknesses of the tested 

pavements for backcalculation of the pavement layer properties.   

Soft computing is an umbrella of computational intelligence techniques that 

handle subjective and numerical (even ambiguous) information and include the principal 

components as artificial neural networks (ANNs), fuzzy mathematical programming, and 

evolutionary computing such as genetic algorithms (GAs). These techniques are powerful 

and versatile computational tools for organizing and correlating information in ways that 
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have proved useful for solving certain types of problems too complex, too poorly 

understood, or too resource-intensive to tackle using more-traditional computational 

methods. The use of soft computing techniques also allows creating analysis tools that 

tolerate imprecision, uncertainty, and partial truth to achieve tractability, robustness, low 

solution cost, and better rapport with reality.  These nontraditional computational 

intelligence techniques have already proven to outperform traditional modeling 

counterparts in solving various complex engineering problems including pavement 

analysis.  The recent adoption and use of ANN modeling techniques in the new NCHRP 

1-37A Mechanistic-Empirical Pavement Design Guide for AASHTO has especially put 

the emphasis on the successful use of ANNs in pavement systems. Further, a current 

Transportation Research Board subcommittee was focused on ―Applications of 

Nontraditional Computing Tools Including Neural Networks‖ with the primary mission 

to provide practitioners a better understanding on and at the same time foster the use of 

the ANNs and other nontraditional computational intelligence techniques in pavement 

engineering applications related to transportation facilities. 

In recent successful applications at the University of Illinois, the use of ANNs 

was introduced for backcalculating the pavement layer moduli and predicting the critical 

pavement responses directly from the FWD deflection basins (Ceylan et al. 2004; Pekcan 

et al. 2006). ILLI-PAVE finite element program (Elliott and Thompson 1985; Gomez-

Ramirez and Thompson 2001; Thompson 1987; Thompson 1989; Thompson 1992; 

Thompson 1994; Thompson and Elliott 1985), extensively tested and validated for over 

three decades, has been used as the primary analysis tool for the solution of full-depth 

and conventional flexible pavement responses under the standard 9-kip FWD loading. 

ANN models then trained with the results of the ILLI-PAVE solutions have been found 

to be viable alternatives to backcalculate the pavement layer moduli and predict the 

critical pavement responses based on the FWD deflection data (Ceylan et al. 2005; 

Pekcan et al. 2006; Pekcan et al. 2007; Pekcan et al. 2008). The trained ANN models are 

capable of backcalculating the pavement layer moduli and predicting critical pavement 

responses, such as tensile strain in the asphalt concrete linked to fatigue cracking and 
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vertical stress/strain linked to subgrade rutting, with very low average absolute errors of 

those obtained directly from nonlinear ILLI-PAVE FE analyses. These error magnitudes 

are commonly much smaller than the ILLI-PAVE algorithms currently in use by Illinois 

DOT. However, it was also shown that these models were developed with the assumption 

that the layer thicknesses information is known in advance or needs to be taken from 

design thickness data, which is generally not available or erroneous when available. In 

addition to this, ANN models are not capable of estimating layer thicknesses using only 

FWD deflections since they implement direct inversion methodology. In order to estimate 

the pavement layer parameters completely and more reliably, there is a need to replace 

the existing backcalculation technique with a better one.       

Development of an innovative methodology, called SOFTSYS, Soft Computing 

Based Pavement & Geomaterial System Analyzer, has been implemented here as an 

original way of interpreting the results of FWD tests for full-depth pavements with the 

purpose of determining pavement layer properties as well as the layer thicknesses from 

FWD data without the need for pavement coring. Since the layer thickness information 

plays a crucial role in FWD data backcalculation and remaining pavement life estimation, 

the outstanding contribution of SOFTSYS is that it is able to estimate the pavement layer 

thicknesses reliably in addition to their stiffness properties.  Using only FWD test results 

(i.e. deflections) as inputs, SOFTSYS calculates all the necessary properties for pavement 

evaluation. For this purpose, it uses a combination of two soft computing techniques, 

ANNs and Genetic Algorithms (GAs).  The SOFTSYS approach, being so quick and 

robust, has been utilized for real time evaluation of pavements to also facilitate as-

constructed pavement layer thickness quality control and the verification of in-service 

pavement overlay design parameters. 

1.2 Research Objectives  

The overall objectives in this NEXTRANS research are to:  
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(1) support the development of the framework SOFTSYS for evaluating in-

service flexible pavements with the purpose of determining pavement layer thicknesses 

as well as the layer properties from FWD data without the need for pavement coring,  

(2) compare and verify SOFTSYS results with those of the nonlinear ILLI-PAVE 

based FE solutions, and,  

(3) validate SOFTSYS performance for determining pavement thicknesses and 

layer properties with actual field data where Ground Penetrating Radar (GPR) tests can 

be performed for layer interface locations and/or cores can be collected from existing 

highway pavements in coordination with the nondestructive FWD testing and pavement 

evaluation activities of SHAs.  

By successful completion of this study, the intent has been to provide field 

engineers with a field validated nondestructive pavement evaluation tool called 

SOFTSYS, to assess pavement condition and to provide solutions when there is no 

thickness data available for the pavement section, where FWD testing is performed and 

eventually help assess pavement rehabilitation strategies. 

1.3 Research Methodology 

The NEXTRANS research was performed using the following detailed project 

tasks and integration aspects: 

Task 1 – Characteristics of Flexible Pavements: Participation and collaboration by 

the SHAs in Illinois, Indiana, and Ohio were essential in identifying typical flexible 

pavement types, including those with lime stabilized subgrades, and geometries in their 

State, establishing a database of these in-service pavements, and collecting field FWD 

data. For this purpose, an extensive Long Term Pavement Performance (LTPP) database 

was also utilized.  

Task 2 – Generating ILLI-PAVE FE Solutions: A comprehensive ILLI-PAVE FE 

analysis database was established to cover ranges of all pavement types, layer thicknesses 

and material properties identified. The nonlinear ILLI-PAVE mechanistic solutions are 
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equivalent to the most sophisticated LEVEL 1 analysis results of the newly released 1.0 

version of the Mechanistic Empirical Pavement Design Guide software.   

Task 3 – Development of the SOFTSYS Methodology: The SOFTSYS approach 

was developed by integrating IT based data mining and soft computing techniques for the 

determining reliably pavement layer thicknesses by nondestructive means. Integrating 

and implementing findings of the previously mentioned UIUC researchers has been a key 

component of success under this task. Both the ILLI-PAVE mechanistic pavement 

solution database and field collected FWD data have  essentially been used in the training 

and development. In addition, SOFTSYS methodology primarily used more accurate 

forward calculation results when compared to the backcalculation ANN models 

developed in a recent Illinois DOT project by the authors. The role of GAs has been 

primarily in the area of optimization and search with its parameters inspired by the 

natural evolution.  

Task 4 – Validation of the SOFTSYS Methodology: Both GPR and FWD data 

combined was used to validate the developed SOFTSYS approach. Any pavement core 

information also obtained during field testing was also very useful. Monitoring and 

improving the quality of field data was sought out by integrating advances in sensor 

installation and sensing technologies as well as utilizing wireless data transfer.  

1.4 Report Organization  

Chapter 2 of this report introduces FWD testing as the most popular pavement 

nondestructive testing and evaluation approach and gives a complete literature review of 

the backcalculation methods including the background information provided on the 

advanced methods used in this study, i.e., ANNs and GAs. The development of ANN 

based structural models are described in Chapter 3 for full-depth asphalt pavements 

found/constructed in Illinois on both natural and lime stabilized subgrade soils. The 

developed ANN models are also validated with synthetic FWD data in Chapter 3.  

Chapter 3 also introduces the SOFTSYS approach based on the combined use of ANNs 

and GAs for pavement layer modulus and thickness determinations applied mainly to 
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full-depth asphalt pavements built on natural and lime stabilized subgrade soils. Chapter 

4 includes field validation of the SOFTSYS methodology.  Finally, a summary and the 

major findings of the research study are given in Chapter 5.  
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CHAPTER 2.  LITERATURE SURVEY 

2.1 Backcalculation Problem 

In the area of transportation geotechnics, the practice of determining the pavement 

layer properties using surface deflections is commonly referred to as backcalculation. The 

backcalculation of layer properties including pavement layer moduli and even layer 

thicknesses from surface deflection measurements plays a major role in the structural 

evaluation of pavements, design of overlays and management of in-service pavements. 

There are mainly two approaches to determine the existing condition of a pavement; 

either by destructive or non-destructive means. In the last three decades, the 

improvements in technology have caused the non-destructive testing (NDT) methods to 

become more popular since there is neither disturbance to the integrity of the material nor 

the sampling of it.  Moreover, they are quite easy to use, repeatable, and they can be 

performed much more rapidly than destructive tests. These advantages result in much less 

overall cost in the long run when compared to those of the destructive testing methods. 

Against all the advantages, the reliability of NDT methods certainly depends on the 

accurate interpretations of the test results and the precise determination of the pavement 

layer material properties, such as pavement layer stiffness or modulus and layer 

thickness. Falling Weight Deflectometer (FWD) testing is the most popular NDT method 

for evaluating pavements. It provides pavement surface deflections recorded by several 

offset sensors in response to a constant load dropped from a specific distance at a certain 

frequency. These deflections are essentially used for structural evaluation of pavements. 
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2.2 Falling Weight Deflectometer Testing  

Falling Weight Deflectometers (FWDs) have been known as NDT devices which 

can exert an impulsive load on the pavement and record the resulting deflections on the 

pavement surfaces at several distances from the load. As the name implies, an FWD 

imparts its test load by means of a specified weight (usually between 110 and 660 lbs.) 

falling a given distance (up to 16 in.) and striking a buffered plate resting on the 

pavement surface (see Figure 2.1).  It can produce a peak dynamic force typically 

between 1,500 and 24,000 lbs in 25-30 milliseconds (see Figure 2.2).  The load is 

transmitted from the rubber buffers to pavement through a 5.91-in. radius steel plate 

underlain by a rubber pad, which helps applying the load uniformly on the pavement 

surface. The FWD impulse load duration of 25 to 30 milliseconds approximates the same 

load duration of a vehicle traveling at 40 to 50 mph (Ulliditz and Stubstad 1985).   

Deflections with FWD equipment are typically measured at the center of the load 

and up to six other locations. A typical test configuration is shown in Figure 2-3. One 

major advantage of FWD is that it is better than any other testing equipment in 

replicating the load histories and deflections produced by moving vehicles. This 

deflection profile or basin is primarily affected by the properties of individual pavement 

layers as well as the magnitude and frequency of the loading (Shahin 2005). In 

comparing elastic properties calculated from an earlier Dynaflect test with results from 

the FWD, it was found that dynamic inertia effects were less important in the FWD 

results due to the higher frequencies(Roesset and Shao 1985). Hoffman and Thompson 

(1981) compared the FWD with the Road Rater Model 400B and the Benkelman Beam 

NDT equipment. They concluded that the FWD produced a deflection which best 

represented conditions under a moving wheel load. Since FWD is the closest device for 

replicating the deflections of a moving truck (Ulliditz and Stubstad 1985), it has been 

widely accepted worldwide.  Among many FWD’s described in the literature, the three 

most commonly used and commercially available ones are the following: 

1) Dynatest Model 8000 (Dynatest Consulting, Inc.); 

2) KUAB FWD Models 50 and 150 (KUAB America);   
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3) JILS FWD (Foundation Mechanics, Inc.). 

 

 

Figure 2.1. Dynatest Falling Weight Deflectometer device. 

 

Figure 2.2. Haversine loading applied by FWD. 
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Figure 2.3. Locations of FWD sensors and schematic drawing. 

FWD test deflection basins can be successfully interpreted to identify the existing 

condition of a pavement under traffic loading. For example, at a specified temperature, 

small deflections may indicate the response of a strong pavement structure, while larger 

ones might dictate the existence of weaker sections. Diagnosing the current conditions of 

pavements, however, requires inversion of mechanical properties through evaluation of 

FWD data. 

2.3 Backcalculation Methods 

Backcalculation is an inverse type of engineering problem, which is generally 

hard to solve analytically due to its ill-posed nature. The sensitivity of solutions, i.e., 

backcalculated layer properties, to the deflections as the variables of the inverse problem 

is generally quite high. In addition, the solutions typically require searching of a 

multidimensional nonlinear space formed by the variables, where traditional numerical 

approaches do not operate well (Liu and Han 2003). The computational procedure to 

effectively solve this problem usually includes both a pavement response model and an 
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optimization algorithm. Indeed, the key steps for an effective solution are to understand 

the nature of the problem and select the appropriate methodology that relaxes the 

complexity of the inversion process. 

The concept of backcalculation for pavements became popular in the last three 

decades along with wide use of mechanistic-empirical methods in the design of 

pavements and developments in pavement management systems. Backcalculation 

approaches for obtaining pavement moduli using NDT data can be grouped into three 

methods (Anderson 1988): 

 Simplified methods;  

 Gradient relaxation methods; and 

 Direct interpolation methods. 

 

Among the different types of methods listed, the most popular ones are gradient 

relaxation methods. In this type, generally a mathematical model of the pavement is 

constructed and subjected to the appropriate NDT load to obtain surface deflections as a 

function of pavement layer properties. This model can then be run with various layer 

properties until a satisfactory solution set is found for which the measured deflection 

basin is produced (see Figure 2.4).  

Alkasawneh (2007) summarized the main steps of the backcalculation as follows: 

1. Define the input parameters of the pavement system including thickness of 

each layer, Poisson’s ratio, etc. 

 

2. Assume moduli seed values for the pavement system. Seed moduli values can 

be assumed based on experience or based on typical moduli values. Moduli 

values can be different based on the forward method implemented in the 

backcalculation program. 

 

3. Calculate the pavement deflections, using the forward program, at the FWD 

geophone locations (along the surface). 

 

4. Compare the calculated deflections with the measured deflections. If the 

difference between the calculated and measured deflections is acceptable, then 

the assumed layer moduli are the actual moduli. Otherwise, the assumed layer 

moduli are not the actual moduli and the assumed moduli should be refined. 
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5. Repeat steps if necessary. 

 

Figure 2.4. Traditional iterative backcalculation procedure (Meier 1995). 

In addition to these, many computational methods were proposed. Linear 

regression methods, artificial neural networks (ANNs), genetic algorithms (GAs), and 

fuzzy systems were mainly utilized as backcalculation techniques. A recent study by 

Goktepe et al. (2006) provides an extensive summary of these methods.  Particularly, 

many researchers found soft computing methods to be useful due to their advantages such 

as non-universality and noise tolerance (Ghaboussi 2001; Ghaboussi and Wu 1998), 

which can properly deal with the difficulties naturally existing in the backcalculation 

problem.  

2.4 Soft Computing Methods 

There has been a tremendous research effort to solve the complex problems by 

applying techniques which produce rather not perfect, but sufficiently precise results 
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given the scope of the problem. These techniques are generally known as Soft Computing 

methods, which mainly include ANN’s, GA’s and fuzzy logic based computing methods, 

etc. All of these methods have wide range of applications in engineering problems. In this 

section, as a sub-class of soft computing methods, the development of GA’s and ANNs 

for pavement backcalculation studies will be reviewed.  

2.4.1 Genetic Algorithms 

Genetic Algorithms (GAs) are class of computational models working based on 

the evolutionary process in nature. GAs use the adaptation based random directed search 

techniques inspired by natural selection to obtain robust and computationally efficient 

solutions for engineering problems. They have been very popular in the last three decades 

due to their attractive features such as they do not require a previous knowledge of the 

problem domain, their robustness has been well established. There are numerous 

successful implementations in the literature for search and optimization problems as well 

as machine learning (Goldberg 1989).  

Many researchers have investigated the application of GAs in optimization and 

design (Michalewicz 1996). The benefits of GAs over other methods used in search, 

including mathematical programming and heuristic search methods are (Rasheed and 

Hirsh 1997): 

 The provision of a global search method, which is more effective for 

searching multi-modal and deceptive problem domains than the local 

search methods provided by traditional and heuristic search methods. 

 

 The ability to easily incorporate discrete, continuous, and mixed variables 

into the constraint formulation. 

 

 The ability to handle arbitrary objective functions that are nonlinear, 

discontinuous, ill-defined, and deceptive without requiring gradient 

information. 

 

 The ability to perform fitness evaluations and genetic manipulations 

independently for each individual, which makes GAs suitable for parallel 

computation. 
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In addition to this, Cox (2005) summarized the advantages and disadvantages of 

the GAs as follows: 

 The ability to solve highly nonlinear, noisy and discontinuous problems 

 The ability to solve complex optimization problems 

 A complete dependence on the fitness function 

 A sensitivity to genetic algorithm parameters 

 A sensitivity to genome coding 

Variations in each of the above items have been examined by researchers, and 

several generations of improvements within each area have been realized. The theory 

describing the behavior of GAs, however, remains grounded in the schema theorem and 

the principle of minimal building blocks as defined by Holland (1975)  and Goldberg 

(1989). Both principles recommend the selection of a representation of  fixed length that 

encodes the parameters of the problem in binary form. This is readily confirmed by the 

vast number of applications that use this standard GA representation. 

Operation of GAs is conceptually different than other methodologies in four 

different ways (Goldberg 1989) 

1. GAs work with coding of the parameters, not the parameters themselves. 

 

2. GAs use population of solutions, not a single solution. 

 

3. GAs use the payoff (objective) information, not additional information or 

derivatives, etc. 

 

4. GAs use probabilistic transition rules, not the deterministic ones. 

 

GAs encode the variables of the problem into a finite set of strings of alphabets of 

certain cardinality (number of possible elements in the set). These strings are the potential 

solutions to the problem and referred to as chromosomes, the alphabets are referred to as 

genes and the values of the genes are called alleles (Burke and Kendall 2005). The total 

encoded parameter information in the GA string is called genotype and the decoded form 
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is named as phenotype. Table 2-1 summarizes the genetic terms GAs borrow to explain 

the form and processing of the GA representation and operators. 

Table 2-1 The definitions of terms used in Genetic Algorithms 

 Parameter Explanation 

Gene encoded parameter value 

 

Allele all possible values that can be encoded for a specific parameter 

 

Genotype the total encoded parameter information in the GA string 

 

Phenotype the decoded solution from the GA string 

 

Crossover exchanging string segments between two selected GA strings 

 

Mutation changing a single bit or value randomly on a single GA string 

 

Selection performing a "survival of the fittest" reproduction of GA strings 

 

 

GAs also work using a fitness measure to evaluate the effectiveness of the 

obtained solutions and to produce better solutions to effectively build up natural 

selection. This measure can either be an objective function that is a mathematical model 

or a computer simulation or an subjective function where humans can choose better 

solutions compared to other ones. 

The concept of population is an important aspect in GAs. As the name implies, 

GAs rely on the population of candidate solutions. The size of the population can be 

specified by the user and it is one of the important factors affecting the performance and 

scalability of GAs. For example, small population sizes may lead to premature solutions 

while the large populations may result in extensive computation times (Burke and 

Kendall 2005). 

The major steps of GAs are as follows: 
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1. Initialization: The initial population of candidate solutions is generated (usually 

randomly) across the search space. Here, the domain specific knowledge or other 

information can be incorporated. 

2. Evaluation: Once the measure for fitness and the termination criteria are 

determined, the candidates of initial population are evaluated based on this criterion. If 

the criteria for termination are not satisfied, the evolution is carried through the first 

generation, with the strings in the initial population being the parent strings of the next 

generation. 

3. Selection: Selection allows more copies of the solutions with higher  fitness 

values and thus imposes the survival-of-the-fittest mechanism on the candidate solutions. 

There are many selection mechanisms to provide better members to the population with 

evolving generations such as roulette wheel selection, stochastic universal selection, 

ranking selection and tournament selection, some of which are going to be described in 

the next section. 

4. Recombination: In this step, two or more parental solutions are combined to 

create new candidates (i.e., offsprings) of the next generation, which are possibly better 

solutions. While there are many ways of doing this, the main idea is to provide efficiency 

for the algorithm to produce offsprings which will inherit parental traits in a novel 

manner (Goldberg 2002) . 

5. Mutation: While recombination operates on two or more candidates, mutation 

works on single solution to modify it randomly to create diversity in the population. It is 

applied to each gene with a small probability. Similar to other operators of GAs, there are 

also many mutation techniques, such as bitwise mutation or problem specific mutation 

operators.  

6. Replacement: The offsprings created by the above genetic operators replace the 

original parental population by replacement techniques such as elitist replacement, 

generation-wise replacement and steady state replacement, etc. 
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2.4.1.1 Simple Genetic Algorithms (SGA’s)  

 

SGAs are identified by the use of three standard genetic operators: selection 

scheme (generally roulette wheel selection), simple crossover, and simple mutation as 

defined by Goldberg (1989). These three genetic operators are applied to a population of 

fixed length strings consisting solely of binary bits (0 or 1) that represent a fixed set of 

parameter values.  Real or integer parameter values are encoded in the string in a 

predetermined order using ―n‖ bit binary representation for each parameter. The resulting 

string of binary bits is called the genotype. Simple crossover and mutation are performed 

on the genotype. The binary bit strings are decoded into the real or integer parameter 

values to obtain the solution, which is called the phenotype. The expressed phenotype 

provides the solution evaluated by the fitness function. 

The steps required to apply the SGA are shown in Figure 2.5. The designer selects 

the size of the population and randomly initializes all of the individuals in the population. 

The solution represented by each individual is decoded from the genotype and evaluated 

using the defined fitness function. The genetic operations of selection, crossover, and 

mutation are then performed to determine the new population. The iterative process of 

evaluation and genetic manipulation is continued until convergence is reached. The SGA 

evolutionary search process is summarized in six steps: 

1. Generate random initial population of n individuals; 

2. Determine the fitness of each individual; 

3. Select n individuals based on fitness using fitness proportional selection; 

4. Perform crossover and mutation on selected individuals; 

5. Form new population of n individuals; and 

6. Repeat steps 2 through 5 until the stopping criterion is satisfied. 
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Figure 2.5. Simple genetic algorithm (SGA) (Raich 1999). 
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2.4.1.1.1 Simple Genetic Algorithm Genotype/Phenotype Representation 

In SGAs, each parameter value is represented as ―n‖ bit binary number. The 

encoded binary values are concatenated together to form a binary string. The order of the 

encoding is predetermined by n one to one mapping of the parameter values to the 

encoded binary values. The string length is fixed in SGA and is determined by adding the 

lengths of the individual n bit binary numbers. The number of bits, n, used to encode each 

parameter sets explicitly the range of the parameter values, such as a 2-bit binary number 

that is used to represent the integer numbers (0,1,2,3). If other ranges of integer or 

decimal precision numbers are required, a mapping is used to adjust the ranges for 

continuous parameters or to assign values for discrete parameters. An example for 

multivariable phenotype representation is provided in Table 2-2 and Table 2-3.   

Table 2-2 Real Value Representation of Phenotypes 

 

 

Population Variable 1 
Variable 2 

 
Variable 3 

1 17 89 21 

2 25 54 10 

3    

4    

5    

    

… 
… 
… 
… 

… 
… 
… 
 

… 
… 
… 
 

… 

… 

maxPop    
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Table 2-3 Bit String Representation of Phenotypes for Use in Genetic Algorithms 

 

2.4.1.1.2 Roulette Wheel Selection in Simple Genetic Algorithm 

Roulette wheel selection, which is also called fitness proportional selection, was 

one of the first selection methods investigated and is still popular in GAs. A fitness value 

is assigned to each individual based on the evaluation of the defined fitness function, and 

individuals of the population are selected in proportion to their fitness. Each individual j 

in the population will have a probability of selection (xj) based on its fitness value f(xj) 

divided by the sum of the fitness values of the population (Equation (2.1)): 

 

( )
( )

( )
1

f x
j

x
j m

f x
i

i

 
(2.1) 

Popu
latio

n 
Variable 1 

Variable 2 
 

Variable 3 

# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

1 1 0 0 0 1 1 0 1 1 0 0 1 1 0 1 0 1 

2 1 1 0 0 1 0 1 1 0 1 1 0 0 1 0 1 0 

3                  

4                  

5                  

                  

… 
… 
… 
… 

… 
… 
… 
 

… 
… 
… 
 

… 

… 

max
Pop 

                 



 

 

 

 

21 

where m is the number of individuals in the population. An individual with a high fitness 

will have an increased chance of being selected for recombination; those individuals with 

low fitness may not be selected at all.  

Example Problem: Suppose it is desired to maximize the function given in 

Equation (2.2).  

 
2 2

z  x 7  y 3   (2.2) 

with both x and y given on an integer interval [0,7]. For this function, the roulette wheel 

algorithm is explained in Table 2-4: 

Table 2-4 Randomly Created Initial Population for the Example Problem  

(Population Size = 4) 

(a) 
Initial 

Population 
(j) 

(b) 
Phenotype 

(x,y) 

(c) 
Fitness 

(fi) 

(d) 
Genotype 

(x,y) 

(e) 
Normalized 
Fitness (%) 

(fi /SUM) 

(f) 
j

i
ii fS

1

 

(g) 
Random 
Number 

Generator 
b/w 0-100 

(h) 
New 

Parent 
ID 

1 (4,1) 13 
 

100001 
 

12.7 12.7 67 4 

2 (1,4) 37 
 

001100 
 

36.3 49.0 1 1 

3 (6,2) 2 
 

110010 
 

2.0 51.0 69 4 

4 (0,4) 50 
 

000100 
 

49.0 100.0 8 1 

SUM  102 
 
 

 100   

1. The members of the population are numbered.  

2. Let’s assume that the initial population is created randomly for (x,y) in [0,7] 

interval. 

3. The fitness values (in this case, it is the function we want to maximize) are 

calculated.  
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4. Phenotypes are encoded into Genotypes using 3 bits to represent x and y 

separately. The bit values for “x” and “y” are then combined together to form 

a bit string.  

5. The fitness values are normalized with respect to SUM of all fitness.  

6. Cumulative sum is used to rank the fitness along a straight line between 1 

and 100. It gives the sum of all fitness values from individual one to 

individual i.  

7. Random Number Generator is used to create random numbers between 0 and 

100.  

8. The first individual whose cumulative sum Si is equal or greater than this 

integer will be chosen as a parent. 

2.4.1.1.3 Genetic Manipulation in Simple Genetic Algorithm 

In SGAs, two individuals are randomly paired from the set of selected individuals 

to undergo single point crossover.  For each pair of strings, a bit location is selected 

randomly, the string is cut virtually at this location (called locus), and the portions of the 

strings beyond the cut are exchanged as shown in Figure 2.6. Crossover supports the 

recombination of good building blocks by placing the building blocks in new contexts on 

different individuals (Holland 1975).  

Bit mutations are used by SGAs to prevent the loss of diversity in the population 

by introducing new genetic information or reintroducing previously lost information 

(Goldberg 1989). For the SGA binary representation, a mutation is applied 

probabilistically to each bit in an individual by flipping the bit value from zero to one, or 

vice versa (see Figure 2.7). The mutation rate typically is set at a low level of about 1 

mutation per 1000 bits. After mutation has been performed, the new population consists 

of the children created by the process of crossover and mutation from the parents selected 

from the population. 
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Figure 2.6. Crossover operation. 

 

 

Figure 2.7. Mutation operation with probability of mutation = 1. 

The SGA continues the evolution process until a maximum number of generations 

is reached or a stated convergence criteria has been satisfied for the fitness or population 

convergence. 

2.4.1.2 Genetic Algorithms in Backcalculation  

GAs were effectively utilized for the solution of pavement layer backcalculation 

problem in the past. A binary coded simple genetic algorithm with single point crossover, 

mutation and ranking selection mechanism was first introduced as a novel method for 

backcalculation of pavement layer moduli (Fwa et al. 1997).  In this study, a deflection 
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based objective function was utilized, which seeks for matching deflections calculated 

from one of the two different deflection computation approaches (BISAR or Odemark 

equivalent layer method) with that from FWD testing.  It was also proven that the SGA 

algorithm approach performed better when compared to conventional backcalculation 

software that implements different search routines.  A similar approach was later 

developed for backcalculation of pavement layers with the deflection values obtained 

from elastic layer system analyses (Kameyama et al. 1998). The method of heuristic 

crossover for floating point implementation was used along with dynamic mutation 

operator. Moreover, the implemented ranking selection was modified through 

exterminating the resembling chromosomes to prevent the danger of premature 

convergence. Reddy et al. (2002) developed a GA based backcalculation program that 

implements the same philosophy using an elastic layered pavement software to compute 

surface deflections. Reddy et al. (2004) also later determined a set of optimum 

parameters for backcalculating pavement layer properties using elastic programs. The 

optimal set of GA parameters (population size, crossover and mutation probabilities) was 

determined using a heuristic approach implemented through running a GA based 

backcalculation program called BACKGA.  

The research studies referenced above and others (Al-Khoury et al. 2001; Ceylan 

et al. 2005; Loizos and Plati 2007; Meier et al. 1997; Pichler et al. 2003; Rakesh et al. 

2006; Saltan and Terzi 2004; Willett et al. 2006) describe the computational approaches 

to determine the pavement layer properties. Most of the methodologies presented can 

only estimate pavement layer properties with the already known design thicknesses. The 

ones that can determine the thickness, however, require large computational time. 

Moreover, they all require advanced material properties to be known in advance, which is 

very expensive and difficult. As a result, they are not practical to implement in the field 

or even as a theory based solution to the problem.  

The previous studies proved that GAs were successful in finding the solution for 

the backcalculation problem. However, all the proposed methodologies use the solutions 

of elastic layered programs or the programs mainly employed at the design stage of 



 

 

 

 

25 

pavements for matching deflections obtained from FWD tests. On the other hand, loading 

conditions for pavements induce high nonlinearity in material behavior. Therefore, proper 

pavement modeling requires consideration of nonlinear pavement layer properties, which 

makes the solution of the backcalculation problem even more difficult.  

In this project, the applicability and performance of a new SGA approach adopted 

is investigated to backcalculate the layer moduli and thicknesses of full-depth asphalt 

pavements built on natural subgrade and / or lime stabilized soil layer in the field using 

the pavement responses obtained from the nonlinear finite element program ILLI-PAVE 

solutions. 

2.4.2 Artificial Neural Networks 

 

ANNs are computational models for information processing. ANNs are mainly 

classified as a subclass of soft computing tools that duplicate some of their fundamental 

properties from biological systems (Haykin 1999; Hertz et al. 1991; Reed and Marks 

1999).  They can be trained to perform certain tasks. They are mainly used as one of the 

most powerful data-mining methods. They can tolerate the error in the dataset to a certain 

extent (called imprecision tolerance) and they are mostly valid within the ranges of the 

training datasets (called non-universality). They are quite robust and practical techniques 

for computationally complex problems (Ghaboussi 2001). In many civil engineering 

applications, they are used as nontraditional computing tools that can capture nonlinear 

relationships between inputs and outputs of natural phenomena or any numerical methods 

such that well established non-linear regression tools fail due to the complex nature of the 

problem (Ghaboussi and Wu 1998). 

The main type of ANNs is referred to as a multilayer, feed-forward neural 

network composed of single processing elements called perceptrons (Rosenblatt 1958). 

The following are essential to feed-forward neural networks:  

1. A feed-forward propagation rule,  

2. A network topology (i.e., the number of nodes, layers, and their connectivity), 
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3. A learning rule.  

The error back-propagation algorithm (also known as the generalized delta rule) is 

the most commonly used learning rule.  The feed-forward neural networks which use the 

error back-propagation learning rule are generally referred to as back-propagation neural 

networks.  A typical back-propagation neural network used in this study is sketched in 

Figure 2.8. The multilayered back-propagation ANN has usually one input layer, one 

output layer, and the constructed processing elements (artificial neurons) named as 

hidden layers.  The hidden layers are sandwiched between the input and output layers.  

The network operation consists of a highly nonlinear functional mapping of the neurons 

in hidden layers between the input and output variables.  
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Figure 2.8. A typical backpropagation neural network (Tutumluer 1995). 

2.4.2.1 Backpropagation Learning Algorithm 

 

In perceptrons, each artificial neuron or processing element receives several input 

signals Xj originating from previous nodes and then processes each signal considering its 

connection weight Wij (see Figure 2.9). The relationship between the input signals and 

the level of internal activity of the processing element is given by: 
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Figure 2.9. Summation and transfer functions of a typical artificial neuron. (Tutumluer 

1995) 

 
1

( )
N

i ij j i
j

net W X  (2.3) 

where,   

neti = Net input signal (level of internal activity); 

Wij = Connection weight between artificial neurons i and j; 

Xj = Value of signal coming from previous node j; 

θi = Bias term of node i (corresponds to an activation threshold); 

N = Number of input signals from previous nodes. 

 

When the weighted sum of the input signals exceeds the activation threshold θi, 

the artificial neuron outputs a signal yi dictated by a transfer function f(x).  The output 

signal is then expressed as a function of the net input signal by: 

 ( )i iy f net  (2.4) 
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where,  

 
1

( )
(1 )x

f x
e

 (2.5) 

is a sigmoidal function which gives a value between 0 and 1 for the output yi. 

The neural network modifies the connection weights between the layers and the 

node biases in ensuing iterations to allow a type of learning for the network.  The weights 

and node biases are shifted until the error between the desired output and the actual 

output is minimized. The learning process is described as follows: ―Learning (or training) 

is the process whose objective is to adjust the link weights and node biases so that when 

presented with a set of inputs, ANN produces the desired outputs.‖ 

After each feed-forward sweep of the ANN is completed in the direction of 

activation, the squared error terms E
k
 between the outputs yi and the target values ti 

(actual values in the output layer) are computed from the following: 
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2

k k k

i i
i

E t y  (2.6) 

where i denotes the individual neurons, and superscript k represents the individual data 

values from the training data set.  Note that the output yi in the above equation is actually 

a function of the sigmoidal function given in Equation 2-3. 

The change in the connection weights (ΔWij) between the nodes to be adjusted 

during the learning process is related to the minimization of the average squared error E.  

To minimize the squared error E
k
, the derivative of the error with respect to the 

connection weight Wij between nodes i and j is required as follows: 

 

k

ij
kij ij

E E
W

W W
 (2.7) 
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where  is a learning coefficient > 0.  Using the chain rule of differentiation, the 

derivative term E
k
 / Wij can now be written as: 

in which δi
k
 = ( E

k
 / yi) * ( yi / neti) is defined as ―delta‖ term of the generalized delta 

rule and is given by: 

 

where the letter ―m‖ represents the nodes in the network below the current i’th layer 

towards the output layer (see Figure 2.8).  Since the back-propagation algorithm starts 

from the output layer, the calculations progress implicitly in the direction towards the 

input layer.  The derivative of the sigmoidal function f′(x) to be used in the above 

equation can be given in terms of the function: 

now substitute Equation (2.10) in Equation (2.9) for easy computation of deltas. 

During each iteration (it), the connection weights from node j to i are updated as 

follows: 

where α is called the momentum (or acceleration) term added to stabilize the training 

process.  The summation is done over all individual data in the training set.  The inputs to 

the nodes in the back-propagation direction are taken from the outputs of the nodes in the 

 

k k
k ki i i
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 (2.9) 
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 ( 1) ( ) [ ( ) ( 1)]k k

ij ij i j ij ij
k

W it W it X W it W it  (2.11) 



 

 

 

 

31 

preceding layer, i.e., Xj
k
 = yj

k
 = oj

k
 (for the first hidden layer).  Similarly, the bias term θi 

is also updated at each iteration by an equation of the form: 

As the iterations progress, the network repeatedly cycles through the training set.   

The parameters α and η in Equations (2.11) and (2.12) help provide an accurate 

approximation of the unknown mean squared error (MSE) minimum.  Iterations must be 

continued until an apparent decrease in the maximum MSE to an acceptable level is 

observed. By using the momentum term α in the search, settling into a local minimum or 

oscillating endlessly about the global minimum can be prevented. 

2.4.2.2 FWD Backcalculation using ANNs  

When FWD backcalculation is considered, an ANN model can be trained to map 

deflection basins back onto their corresponding pavement layer moduli. One way to train 

such a network would be to use experimentally determined deflection basins along with 

independently measured pavement layer thicknesses and moduli. However, it is often 

difficult to obtain representative, undisturbed samples with which to make a laboratory 

determination of the pavement layer moduli. Furthermore, because laboratory testing is 

expensive, there is an insufficient quantity of experimental data covering a broad-enough 

range of pavement layer moduli and pavement layer thicknesses to successfully train a 

neural network (Meier 1995).  

Instead, synthetic deflection basins calculated using pavement analysis programs 

such as ILLI-PAVE can be used to create synthetic deflection basins. This allows precise 

control of the pavement layer properties used to train the network. The basic neural 

network training procedure developed for this study can be viewed as a closed loop (see 

Figure 2.10). A mathematical model is used to calculate a synthetic deflection basin for a 

presumed set of pavement layer properties. The artificial neural network is then taught to 

perform the inverse operation of mapping the synthetic deflection basin back onto the 

presumed set of properties. At first, the neural network produces a random mapping; 

 ( 1) ( ) [ ( ) ( 1)]k

i i i i i
k

it it it it  (2.12) 
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however, by repeating the training process many times for many different pavement 

profiles, the neural network will eventually learn the appropriate inversion function 

(Meier 1995).  

 

Figure 2.10. Direct Pavement Backcalculation Procedure Using Neural Network 

Trained ANN models need to be tested based on an independent dataset within 

the ranges that they were trained. A sufficiently wide dataset obtained from the pavement 

analysis can be chosen independently considering the given ranges of material and 

geometry properties and used as the testing dataset for the verification of proper ANN 

learning. The remaining data are then used for the training and learning procedure.  

Whether the trained ANN models are capable of producing the same database (with the 

given inputs to obtain outputs or vice versa) can be checked quickly in this manner.  
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Figure 2.11 (a) and (b) show proper and improper learning curves for training and testing 

datasets. Improper learning causes ANNs to memorize the given training dataset and to 

lose the capability of generalization (Reed and Marks 1999). Although training takes a 

long computation time, testing is often much faster (on the order of micro seconds) with 

the already set weighted connections.  This advantage also facilitates the use of trained 

ANNs as quick pavement analysis tools for a field engineer to use them without the need 

for any complex inputs. 
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a.  Proper learning. 
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b.  Improper Learning. 

Figure 2.11. Typical ANN learning curves. 
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CHAPTER 3.  SOFTSYS 

3.1 Introduction 

A typical pavement structure, as shown in Figure 3.1, can be identified using four 

different properties listed below (Selezneva et al. 2002). These properties need to be 

determined to best define a pavement rehabilitation strategy:  

 Layer descriptions (e.g., surface, overlay, base, and subgrade); 

 Material type descriptions of pavement layers; 

 Layer thicknesses; 

 Layer thickness variability. 

 

 

-1- 
Layer  
Description 

-2- 
Material Type 

-3- 
Layer Thickness 

 

-4- 
Thickness Variability 

 

Figure 3.1. Typical pavement system parameters to be determined. 
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Knowing pavement layer thicknesses is critical to predicting pavement 

performance, establishing pavement load carrying capacity and developing pavement 

maintenance and rehabilitation strategies. Accurate determination of pavement layer 

thicknesses usually requires proper sampling from the pavement section (through the use 

of destructive testing). This is usually not preferred since it prevents functionality of a 

pavement and disrupts traffic. Moreover, thickness measurements obtained from only a 

few extracted cores may not always represent adequately the thickness profile. It is 

important to ensure that the thickness of materials being placed by the contractor is 

acceptably close to specifications  (Sener et al. 1998).  

The layer thickness information, a key structural design input, is mainly required 

for many types of analyses including backcalculation of pavement moduli, mechanistic 

analysis of pavement structures, and performance modeling. Due to poor workmanship 

and/or limitations of construction equipment used to build roads, construction quality of 

pavements may not be at a desired level. This might cause the thickness constructed on 

site to be considerably different than the designed thickness.  Furthermore, in many cases, 

the lack of proper design documentation for existing roads makes it extremely difficult to 

rehabilitate certain pavements without the knowledge of pavement layer thicknesses. 

Insufficient knowledge of layer thicknesses during pavement response testing is often a 

major limitation in pavement condition assessment.  

The current methods to determine the thickness usually require coring of 

pavement or using some advanced nondestructive testing equipment such as Ground 

Penetrating Radar (GPR). These techniques are rather expensive or may result in 

destruction of pavement layer profile. On the other hand, if FWD tests are conducted, for 

example, in 5 ft intervals of the road section, in which the abrupt change in the thickness 

is not expected, the thickness profile along the pavement section can be determined with 

reasonably good accuracy and in real time.  

To address the current challenges, an innovative methodology, called SOFTSYS, 

was developed to perform the following tasks in real time as part of conducting FWD 

tests:  
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 Determination of pavement thickness;  

 Estimation of pavement moduli; 

 Identifying pavement parameters such as Poison’s ratio.  

 

SOFTSYS is introduced for interpreting the results of a FWD test. It is a 

computational method to describe the properties of pavement layers. Among those, the 

layer thickness plays the crucial role in determining the remaining life since it is a major 

factor contributing to structural adequacy of the pavement. The outstanding contribution 

of SOFTSYS is that it is able to estimate the pavement layer thicknesses reliably in 

addition to their stiffness properties. Using only FWD test results (i.e. deflections) as 

inputs, SOFTSYS calculates all the necessary properties for pavement evaluation. To do 

this, SOFTSYS uses a combination of nontraditional computing tools, such as Artificial 

Neural Networks (ANNs) and Genetic Algorithms (GAs). Using quick and robust 

algorithms in SOFTSYS, real time evaluation of the pavements becomes feasible to also 

verify as-constructed pavement design parameters in the field.  

3.2 Basics of SOFTSYS 

SOFTSYS interprets FWD test results and performs pavement structural analysis 

based on the Finite Element Method (FEM). FEM provides modeling of pavement 

structure due to applied wheel loading to compute pavement deflections. Unlike the 

linear elastic theory commonly used in pavement analysis, nonlinear unbound aggregate 

base and subgrade soil characterization models are used in the FEM. This accounts for 

the typical hardening behavior of unbound aggregate bases and softening nature of fine-

grained subgrade soils under increasing stress states. The results of the nonlinear finite 

element approach have been proven to be consistent with the deflections obtained from 

NDT of pavements. Since FEM internally captures the nonlinear material properties to 

simulate the real pavement behavior, SOFTSYS, therefore, has an inherent capability of 

incorporating the nonlinear properties of aggregate and soil layers underneath pavements.  
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3.2.1 ILLI-PAVE Finite Element Modeling 

An integral part of SOFTSYS is the implementation of finite element method. For 

this purpose, ILLI-PAVE 2005 finite element (FE) program, the most recent version of 

this extensively tested and validated ILLI-PAVE pavement analysis program for over 

three decades, was used as an advanced structural model for solving deflection profiles 

and responses of the typical full-depth pavements (FDP) and full-depth pavements on 

lime stabilized soils (FDP-LSS). ILLI-PAVE uses an axisymmetric revolution of the 

cross-section to model the layered flexible pavement structure. Unlike the linear elastic 

theory commonly used in pavement analysis, nonlinear unbound aggregate base and 

subgrade soil characterization models are used in the ILLI-PAVE program to account for 

typical hardening behavior of base course granular materials and softening nature of fine-

grained subgrade soils under increasing stress states. Among the several modifications 

implemented in the new ILLI-PAVE 2005 finite element code are:  

 increased number of elements (degrees of freedom);  

 new/updated material models for the granular materials and subgrade 

soils;  

 enhanced iterative solution methods;  

 Fortran 90 coding and compilation, and  

 a new user-friendly Borland Delphi pre-/post-processing interface to assist 

in the analysis (Gomez-Ramirez et al. 2002)(see Figure 3.2).  
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Figure 3.2. ILLIPAVE 2005 finite element software for pavement analysis. 

3.2.1.1 Falling Weight Deflectometer Simulation 

 Pavement FE modeling was performed in this study using an axisymmetric (FE) 

mesh for all pavement sections considered. Using ILLI-PAVE FE program, FWD tests on 

flexible pavements were modeled with the standard 9-kip equivalent single axle loading 

applied as uniform tire pressure of 80 psi over a circular area of 6 in. radius.  The FE 

mesh was selected according to the uniform spacing option of the FWD sensors as 

follows: 0 in., 8 in., 12 in., 18 in., 24 in., 36 in., 48 in., 60 in. and 72 in. away from the 

center of the FWD plate.  The surface deflections corresponding to the locations of these 

FWD sensors were abbreviated as D0, D8, D12, D18, D24, D36, D48, D60 and D72, 

respectively.  

These deflections are in conformity with the uniform spacing commonly used in 

FWD testing by many state highway agencies (Table 3-1). Typically, finer mesh spacing 

was used in the loaded area with the horizontal spacing adjusted according to the 

locations of the geophones used in FWD tests.  In addition to the deflections, the critical 
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pavement responses, i.e., horizontal strain at the bottom of AC layer ( AC), vertical strain 

at the top of the subgrade ( SG), and the vertical deviator stress on top of the subgrade 

( DEV) directly at the centerline of the FWD loading, were also extracted from ILLI-

PAVE results. Figure 3.3 (a) and (b) show the locations of these responses obtained from 

different types of flexible pavements. These critical pavement responses play a crucial 

role in the context of mechanistic-empirical asphalt pavement design procedures as they 

directly relate to major failure mechanisms due to excessive fatigue cracking and rutting 

in the wheel paths.  

Table 3-1 Falling Weight Deflectometer Sensor Spacing 

Sensor Spacing (in.) 0 8 12 18 24 36 48 60 72 

Uniform 

(used in this study) 
+  +  + + + + + 

State Highway Research 

Program (SHRP) 
+ + + + + +  +  

 

A total analysis depth of 300 in. was selected for all pavements analyzed.  

Depending on the thicknesses of the layers, an aspect ratio of 1 was mainly used in the 

finite elements with a limiting value of 4 to get consistent pavement response predictions 

from ILLI-PAVE FE analyses (Pekcan et al. 2006).  The vertical and horizontal spacings 

in the FE mesh were chosen appropriately so that there was neither numerical instability 

nor inconsistency in the results due to meshing. Figure 3.4 shows a sample ILLI-PAVE 

FE mesh that was used in the analyses of FDP-LSS. The thicknesses of all layers were 

selected to have appropriate ranges encountered for most flexible pavements in Illinois, 

Ohio and Indiana. 
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(a) full-depth asphalt pavements  

. 

  

(b) full-depth asphalt pavements built on lime stabilized soils 

Figure 3.3. Locations of critical pavement responses and deflections. 
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Figure 3.4. Finite element mesh for full-depth pavements on lime stabilized subgrade. 

3.2.1.2  Pavement Layer Characterization  

Adequately characterizing pavement layer behavior plays a crucial role for an 

accurate backcalculation of the layer moduli.  Accordingly, modeling of FDP and CFP 

requires accurate material characterizations for the asphalt concrete, granular base and 

fine-grained subgrade soil layers. After material shakedown has taken place due to 

construction loading and early trafficking of the pavements, most of the deformations 

under a passing truck wheel are recoverable and hence considered resilient or elastic.  

The resilient modulus (MR), defined by repeated wheel load stress divided by recoverable 

strain, is therefore the elastic modulus (E) often used to describe flexible pavement layer 

behavior under traffic loading.   
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In ILLI-PAVE FE models of the different flexible pavements analyzed, the 

asphalt concrete (AC) surface course was always represented with elastic properties, 

layer modulus EAC and Poisson’s ratio AC, for the instant loading during FWD testing. 

The value of AC was taken constant as 0.35. 

The modeling of fine-grained subgrade soils, mainly encountered in Illinois, has 

received more attention in the last three decades since it has a major impact on all the 

responses predicted under traffic loading within the context of M-E design. Fine-grained 

subgrade soils exhibit nonlinear behavior when subjected to traffic loading (Ceylan et al. 

2005; Thompson and Robnett 1979). The subgrade stiffness characterized by the resilient 

modulus (MR) is usually expressed as a function of the applied the deviator stress through 

nonlinear modulus response models.  These models were developed based on the results 

of repeated load triaxial tests, which forms the basis of evaluating resilient properties of 

fine-grained soils (AASHTO-T307-99. 2000).   

Illinois subgrade soils are mostly fine-grained, exhibit stress softening behavior, 

and can be characterized using the bilinear arithmetic model (Thompson and Elliott 1985; 

Thompson and Robnett 1979) with the modulus-deviator stress relationship shown in 

Figure 3.5. The upper limit deviator stress in the bilinear model, dul, is dependent on the 

breakpoint modulus, ERi, which is also a function of the unconfined compressive strength, 

Qu, expressed by Equation 3.1 (Thompson and Robnett 1979). ERi is a characteristic 

property of the fine-grained soil often computed for Illinois soils at a breakpoint deviator 

stress di of 6 psi.  The corresponding values and parameters of the bilinear model used in 

the analyses are also given in Figure 3.5.  
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Figure 3.5. Bilinear model to characterize stress dependency of fine-grained soils 

(Thompson and Robnett 1979). 

 
( ) 0.86

( ) ( )
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3.2.1.3 ILLI-PAVE Database for Flexible Pavements  

Randomly selected combinations of material and thickness inputs were provided 

to ILLI-PAVE to generate batch analyses. A total of 24,000 ILLI-PAVE runs were made 

for FDP and 26,000 for FDP-LSS in order to fully cover the material property ranges 

given in Table 3-2 and Table 3-2Table 3-3. To make sure that ANN models had the 

ability to perform correctly for representative field conditions, the ranges of layer 

thickness values and material property inputs were extended up to ±20% beyond the 

actual field values. The surface deflections corresponding to the locations of the FWD 

sensors and the critical pavement responses, i.e., horizontal strain at the bottom of AC 

layer ( AC), vertical strain at the top of the subgrade ( SG), and the deviator stress on top 
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of the subgrade ( DEV), directly at the centerline of the FWD loading were then extracted 

from the ILLI-PAVE output files.  

Table 3-2 Geometries and Material Properties of Full-Depth Flexible Pavements 

Analyzed 

Material Type Thickness (in.) Material Model 

Elasticity 

Modulus 

(ksi) 

Poisson’s Ratio 

Asphalt Concrete (AC) 5-24 
Linear 

Elastic 
100 – 2 000 0.35 

Fine Grained Subgrade 

(SG) 
(300- tAC) 

Nonlinear 

Bilinear Model 
1-14 0.45 

 

Table 3-3 Geometries and Material Properties of Full-Depth Flexible Pavements on Lime 

                 Stabilized Soils Analyzed 

Material 

Type 
Thickness (in.) 

Material 

Model 

Elasticity  

Modulus 

(ksi) 

Poisson’s Ratio 

Asphalt 

Concrete 

(AC) 

4-24 
Linear 

Elastic 
100 – 2 500 0.35 

Lime Stabilized 

Subgrade 

(LSS) 

4-20 
Linear 

Elastic 
16-150 0.31 

Fine-grained 

Subgrade 

(SG) 

(300- tAC - tLSS ) 

Nonlinear 

Bilinear 

Model 

1-15 0.45 

 

This database, which inherently captured the nonlinear FE approximations, was 

then used to train and develop an ANN-based structural analysis toolbox containing 

several ANN models for forward analyses of flexible pavements.  

3.2.2 ANN Structural Models  

The implementation of soft computing methods is the next stage in the algorithm. 

The convergence of SOFTSYS when used with FEM only is quite slow. Therefore, FEM 
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is replaced by ANNs since they work much faster and can still perform similar higher 

order function approximations as FEM. In addition, when ANNs are properly trained, 

they can tolerate errors that FWD tests might involve. This has been a major limitation 

with the classical approaches developed for interpretation of the test results.  

The multi-layered, feed-forward backpropagation type neural networks are mainly 

implemented for complex valued network level problems. In this project, 

backpropagation type ANNs were trained for the backcalculation of pavement layer 

moduli using the previously developed database with the input and output variables.  

Trained ANN models were tested based on an independent dataset within the ranges that 

they were trained. Approximately 1000 runs of all the datasets were independently and 

randomly chosen considering the given ranges of material and geometry properties and 

used as the testing datasets for the verification of proper ANN learning. The remaining 

ILLI-PAVE runs in the datasets were used for the training and/or learning task. The 

trained ANN models were checked quickly in this manner to determine whether or not 

they were capable of producing the same database results (with the given inputs to obtain 

outputs or vice versa).  Although training of each ANN model required a long 

computation time, with the already set weighted connections, testing was much faster (on 

the order of micro seconds). This advantage allows a field engineer to use trained ANN 

models as quick pavement analysis tools without the need for any complex inputs  

3.2.2.1 Forward Analysis Models  

There are mainly two ANN models designed to compute the responses of flexible 

pavements under a typical FWD loading. They were developed for FDP and FDP-LSS 

pavements using the different geometries and layer properties. Although the input 

variables of these models are different by the nature, the outputs are the same for FDP-

FW1 and FDP-LSS-FW1 and they are given in Table 3-4. Both models were developed 

to predict the surface deflection values D0, D12, D24, and D36. In addition, for both 

models, the ANN architectures were chosen to have two hidden layers with 60 neurons in 

each layer. This was according to the findings from previous ANN trainings performed 

by Ceylan et al. (2005). Finally, the ANN models were trained for 10,000 epochs.  
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Table 3-4 Forward Artificial Neural Network Models for Flexible Pavements 

Type Inputs Outputs 

FDP-FW1 t
AC

,E
AC

, E
RI

 D0, D12, D24, D36 

FDP-LSS-

FW1 
tAC, tLSS, EAC, ELSS, ERI D0, D12, D24, D36 

One of the basic advantages of the developed ANN models is that they do not 

require complicated FE inputs that are either difficult or costly to obtain through 

laboratory and field characterizations for the analyses of flexible pavements. Yet, the 

solutions are still considering the needed sophistication in analysis, such as, the stress 

dependent subgrade behavior and the lime-stabilized subgrade layer as an additional layer 

on top of the natural unmodified grade, and the realistic layered pavement structure of 

flexible pavements.  

3.2.2.2 Performances of the Developed ANN Models 

 ANN forward calculation models developed for the analyses of flexible 

pavements were verified for satisfactory performances using the independent testing data 

extracted from the database of the ILLI-PAVE FE solutions. The performances of ANN 

models were indicated by comparing predictions with the ILLI-PAVE FE results using 

average absolute error (AAE) values. AAE is defined in Equation 3.2 where the 

measured value is the result of ILLI-PAVE while the calculated one is obtained through 

ANN models.  

 
1

( ) /

( ) 100

n

i i i

i

Measured Calculated Measured

Average Absolute Error AAE
n

 
 (3.2)  

The results of ANN training analyses are presented for both FDP pavements and 

pavements built on LSS using the AAEs of deflection values in Figure 3.6 and Figure 3.7, 

respectively. Figure 3.6 shows the deflections of FDPs predicted by ANN models at the 

FWD geophone locations D0, D12, D24, and D36 to match accurately with the ILLI-PAVE 
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results for AAE values obtained between 0.2 to 0.5%. Similarly, comparisons of ANNs 

with ILLI-PAVE results produced AAE values between 0.2 to 0.4% for FDP-LSS.   
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Figure 3.6. Comparisons of ANN structural model predictions with ILLI-PAVE results for 

full-depth asphalt pavement surface deflections (in mils). 
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Figure 3.7. Comparisons of ANN structural model predictions with ILLI-PAVE results for 

surface deflections (in mils) of full-depth asphalt pavements built on lime stabilized soils. 

  

3.2.3 Genetic Algorithms as Search Tools 

As discussed in Chapter 2, GAs are computational models based on natural 

evolution (Holland 1975). They are powerful optimization and search methods. GA 
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methodology is highly robust and imprecision tolerant. The results are not necessarily 

exact instead are accurate to a certain degree of approximation (Ghaboussi 2001).  

In the previous section, it was proven that properly trained artificial neural 

network (ANN) models as computational intelligence or soft computing tools are capable 

of predicting displacements with average errors much smaller than those obtained with 

the statistically formulated algorithms currently in use by Illinois DOT.  These models 

then trained with the results of the ILLI-PAVE solutions have been found to be viable 

alternatives to predict the deflections based on the FWD data. These ANN models can be 

reliably used together with GA’s in a hybrid way.  

In SOFTSYS, GAs work for random search with the operators inspired by the 

natural evolution. The major components of GAs are; the genotype / phenotype 

presentation of parameters of the problem domain (i.e., pavement layer moduli and 

thicknesses), fitness evaluation (mathematical expression as a measure of the difference 

between the surface deflections obtained by the FWD test and the ones calculated from 

ANN model), selection scheme, crossover method, and mutation. A collection of input 

parameters within a reasonable range are created randomly to have the database of all 

possible combinations of pavement layer material properties including material moduli 

and thickness encountered in the pavement. These are then fed into the ANN model as 

testing data set to compute the corresponding deflection profiles. The testing of all data 

sets created by GAs is done within a second, which is quite insensitive to number of 

testing data. GAs, then, sort input data set based on the imposed fitness function 

calculated using the outputs of ANN results and the deflection profile obtained by FWD 

testing. Natural evolution operators; selection, crossover, and mutation are then applied to 

the so-called parents and to their offspring to establish the most satisfactory data set for 

the surface profile obtained from FWD. Finally, an iterative algorithm called ―fine tuner‖ 

implemented into SOFTSYS has been intended to improve the precision of the obtained 

results. The fitness evaluation is given in Equation 3.3. The flowchart of SOFTSYS is 

also provided in Figure 3.8.  
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   (3.3)  

In conclusion, SOFTSYS features high reliability and advanced technology for 

predicting repeatable results in a quick and robust fashion to enable practical engineering 

interpretations of FWD test data essentially needed for nondestructive evaluation of 

pavements.  
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Figure 3.8. SOFTSYS algorithm.
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CHAPTER 4.  SOFTSYS MODELS AND VALIDATION 

4.1 Backcalculation Models 

There are two main backcalculation models developed for SOFTSYS in the scope 

of this project. These are provided in Table 4-1. The first one, FDP-M1, predicts tAC, EAC 

and ERI with the use of information obtained from FWD test data (D0, D12, D24, D36) in 

addition to the design thickness of FDP. The second model, FDP-LSS-M1, uses 

deflection information without the need of thickness entry for asphalt layer for FDP-LSS. 

This model predicts the asphalt thickness using FWD deflections together with the lime 

stabilized layer thickness.  Both models use the same forward ANN structural model, 

which replaces ILLI-PAVE FE program successfully (the performance of the 

corresponding ANN model was provided in the previous chapter).  

Table 4-1 Falling Weight Deflectometer Sensor Spacing 

Model Name Inputs  Outputs  

FDP-M1 D0, D12, D24, D36 tAC , EAC, ERI 

FDP-LSS-M1 D0, D12, D24, D36, tLSS tAC, EAC, ELSS, ERI 

 

4.2 Performances of Developed SOFTSYS Models 

The performances of SOFTSYS models were measured using the synthetic FWD 

data. For this purpose, 20 stations were selected randomly from the ILLI-PAVE database 

previously obtained for training ANNs to analyze FDPs. This database was named as IP-

SYNTH (stands for synthetic ILLI-PAVE) FWD database. IP-SYNTH was then analyzed 
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using SOFTSYS models. Figure 4.1 provides the predictions of SOFTSYS and compares 

them with those of ILLI-PAVE.  

  

(a) tAC (b) EAC 

 
(c) ERI 

 

Figure 4.1. SOFTSYS FDP-M1 predictions. 

 

A similar study was performed to verify the performance of FDP-LSS-M1 model. 

This time 12 stations were randomly chosen from ILLI-PAVE training database. The 

performances are plotted in Figure 4.2.  
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Figure 4.2. SOFTSYS FDP-LSS-M1 predictions. 
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4.3 Field Validation 

4.3.1 Staley Road Test Sections 

The promising preliminary results obtained with the SOFTSYS approach gave 

high R
2
 values of about 0.97 for FDP and 0.95 for FDP-LSS (equivalent to average 

absolute error, AAE, values on the order of 6% and 9%, respectively) for predicting 

asphalt concrete layer thickness. These results, however, had to be validated with actual 

field data because the FWD database used in testing the SOFTSYS performance was 

obtained synthetically.  For this purpose, field FWD data were first collected from Staley 

Road, in Champaign, Illinois and used for the performance validations of the developed 

SOFTSYS models. The Staley Road data included only FWD results along with the 

temperature information collected in August, i.e. in warm weather conditions. There 

were, however, no cores taken from the pavement sections at the FWD locations.   

Staley Road runs in a north-south direction and is located on the west end of the 

City of Champaign in Champaign County, Illinois [see Figure 3.2 (a) and (b)]. The 

design pavement cross section consists of 12 in. of HMA constructed on LSS with a 

thickness of 12 in. The FWD tests were performed on about 1,000 ft. of the highway 

stretch. The pavement temperature was approximately 100
o
F when the FWD tests were 

performed. Figure 4.4 shows the locations of FWD testing points along the pavement 

section. In this figure, the locations of metal plates on the road and reference points are 

also shown for the sake of completeness.  

4.3.1.1 GPR testing  

GPR technique has been identified as a reliable means to determine thicknesses of 

pavement sections in the field. In addition to use of GPR, construction thickness data 

have been obtained to determine pavement thicknesses in the field and establish a 

database to use in the validation of SOFTSYS pavement thickness predictions. The 

variability in the field determined or as-constructed thicknesses as well as other pavement 

layer properties are the critical factors in these validation efforts. Therefore, along with 

performing FWD tests, GPR testing and field thickness data collection need to be 
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performed on the test sections so that the thickness variations or changes in the 

construction quality may be effectively assessed from the field data. 

 
(a) Map of Staley Road test location 

 
 (b) Layout of Staley Road test sections  

Figure 4.3. Location of Staley Road and test sections. 



 

 

 

 

57 

 
 

Figure 4.4. Locations of FWD tests along the Staley Road sections. 

 

Two sets of GPR tests were performed along the Staley road in the same locations 

where FWD test data were obtained. The details of the GPR tests are provided in Table 4-

2. The first set of GPR tests was performed to obtain the asphalt thickness data from the 

road, and the second one was aimed at verifying the first results and increasing reliability. 

In the first set of tests, North and South bound lanes of the test section were tested using 

both ground and air coupled antennae. In the second set of tests, only air coupled antenna 

was used to verify the previously determined asphalt thickness data. The GPR 

interpretations for both lanes (right wheel paths) are provided in Figure 4.5 and Figure 

4.6. The 1 GHz air antenna was able to capture the HMA and lime stabilized interfaces. 

However, the 2 GHz air antenna was able to verify the HMA thickness, but not the lime 

stabilized interface. The interpretation of data collected with the ground coupled antenna 



 

 

 

 

58 

did not produce meaningful results, which may be due to several reasons such as noise, or 

moisture on the surface of the pavement.  

Table 4-2 GPR Test Conditions Along Staley Road Pavement Sections 

 Test 1 Test 2 

Section 13+800 => 14+750 13+800 => 14+750 

Antenna Used Ground + Air Air 

Air Condition 
Clear (No rain 3 days before 

testing) 
Clear (No rain 3 days before testing) 

 

 
(a) 1 GHz  

 
(b) 2 GHz  

Figure 4.5. GPR test results: north bound right wheel path. 
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(a) 1 GHz  

 
(b) 2 GHz  

Figure 4.6. GPR test results: north bound right wheel path.  

 

The data obtained from GPR indicated that the constructed pavement thickness 

was generally thicker than the design thickness (by approximately 1 in.) although there 

were sections that were even thinner than the design thickness. The thickness data from 

the field were deemed to be essential to calibrate the GPR test results.  For this purpose, 

the elevation data were obtained from the time when the road was constructed. There 

were three observation points identified within the pavement section where FWD tests 
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were performed. These elevation points were then used to sufficiently compare GPR test 

results. Finally, the SOFTSYS predictions were also compared with the thickness data 

both from GPR testing and the construction thicknesses to validate the thickness finder 

portion of the SOFTSYS program. No temperature correction was included in 

backcalculation of pavement layer properties. 

Figure 4.7 (a) to (d) provide the thickness estimations of SOFTSYS from the 

FWD data together with the thicknesses obtained from both GPR and construction survey 

data. The thicknesses obtained using SOFTSYS captured the construction data well on 

the North lane [see Figure 4.7 (a)]. However, SOFTSYS generally predicted lower 

thicknesses on the South lane [see Figure 4.7 (b)]. The SOFTSYS predictions for both 

EAC and ERi are also given in Figure 4.7 (c) and (d), respectively. 

In an attempt to further verify the SOFTSYS results, another model was 

developed to take into account the LSS layer (named FDP-LSS M2) since Staley Road 

was built on lime modified soil. The predictions are given in Figure 4.8 (a) to (g). Similar 

to the ones obtained from FDP-M2 model, the thicknesses obtained using FDP-LSS M2 

were in good agreement with the construction data on the North lane [see Figure 4-13 

(a)]. On the other hand, SOFTSYS generally predicted lower thicknesses on the South 

lane [see Figure 4.8 (b)].  Finally, the SOFTSYS estimations for EAC, ELSS, and ERi are 

also given in Figure 4.8 (c) to (e), respectively.  In general, the variations of AC layer 

thicknesses observed were attributed to the variations of the FWD test data. 
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(a) tAC northbound 
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(b) tAC southbound 

Figure 4.7. Estimation of pavement layer properties using SOFTSYS FDP-M1 of Staley 

Road in Illinois. 
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Figure 4.7. Estimation of pavement layer properties using SOFTSYS FDP-M1 of Staley 

Road in Illinois (cont’d). 
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(a) tAC northbound 
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(b) tAC southbound 

Figure 4.8. Estimation of pavement layer properties using SOFTSYS FDP-LSS M1 of 

Staley Road in Illinois. 
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(c) EAC 
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(d) ELSS 

Figure 4.8. Estimation of pavement layer properties using SOFTSYS FDP-LSS M1 of 

Staley Road in Illinois (cont’d). 
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Figure 4.8. Estimation of pavement layer properties using SOFTSYS FDP-LSS M1 of 

Staley Road in Illinois (cont’d). 
 

4.3.2 LTPP Database Verification 

The Federal Highway Administration’s Long Term Pavement Performance 

(LTPP) database was searched for validation of SOFTSYS models. The states of Illinois, 

Indiana and Ohio were mainly considered in this search utilizing the latest version of 

LTPP database (v2009.01). The ―General Pavement Studies‖ section of the LTPP 

database was mainly investigated. It was found out that only few number of flexible 

pavement sections were reported in these states and they were mostly built on treated 

base layers.  

The SOFTSYS analysis results are presented here for a full-depth flexible 

pavement built on lime stabilized soil layer in Allen County, Indiana. The design 

pavement section consists of the following: a seal coat (0.5 in. of AC), an original surface 

layer (0.5 in. of AC), an AC layer below surface (2.1 in.), another AC layer (10.3 in.), a 

treated base layer (5.3 in.) and finally, fine-grained subgrade soil. The FWD data were 
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collected on April 14, 1994.  The pavement properties predicted using SOFTSYS are 

given below in Figure 4.9 (a) to (d).  
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(b) EAC 

Figure 4.9. Estimation of pavement layer properties using SOFTSYS FDP-LSS-M1 of 

Allen County road in Indiana. 
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(c) ELSS 
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(d) ERi 

Figure 4.9. Estimation of pavement layer properties using SOFTSYS FDP-LSS-M1 of 

Allen County road in Indiana (cont’d). 
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4.3.3 Roseville Bypass  

Roseville Bypass is a connector road to accommodate US-67 traffic in Illinois. 

The design pavement cross section consists of 14 in. of HMA and a 12-in. thick LSS 

layer. The FWD tests were performed on part C of the Roseville Bypass, which is a 

connector road approximately 300 ft. in length. The pavement temperature was reported 

as 97
o
F along the road during the FWD tests. The estimations of SOFTSYS analyses are 

given in Figure 4.9 (a) to (d). 
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(b) EAC 

Figure 4.10. Estimation of pavement layer properties using SOFTSYS FDP-LSS-M1 of 

Roseville Bypass in Illinois. 
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(c) ELSS 
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Figure 4.10. Estimation of pavement layer properties using SOFTSYS FDP-LSS-M1 of 

Roseville Bypass in Illinois (cont’d). 
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CHAPTER 5.  SUMMARY AND CONCLUSIONS 

5.1 Summary 

Pavement condition assessment in the field conducted by the use of Falling 

Weight Deflectometer (FWD) often requires the use of linear elastic pavement layered 

analysis tools to backcalculate layer moduli. However, both the subgrade soils and 

unbound aggregate base/subbase layers exhibit nonlinear, stress dependent geomaterial 

behavior. Sophisticated pavement structural models are needed to perform nonlinear 

analyses for more accurate solutions with fast computation schemes.  This study has 

focused first on the use of ANN pavement structural models developed with the results of 

the ILLI-PAVE finite element (FE) program to predict pavement deflections under FWD 

loading. Then an innovative soft computing application, referred to herein as SOFTSYS, 

has been introduced for the hybrid use of Genetic Algorithms (GAs) and artificial neural 

networks (ANNs) to estimate pavement layer properties including the hot mix asphalt 

concrete (HMA) thickness from only the FWD test data collected on full-depth asphalt 

pavements built on both natural and lime modified subgrades.  

First, information was collected on the types, typical geometries, and layer 

properties of different flexible pavements existing in the States of Illinois, Indiana and 

Ohio. This information was crucial for conducting many ILLI-PAVE FE analyses of 

typical pavement geometries and layer material properties and creating the synthetic 

pavement deflection basin data which represented the response behavior of flexible 

pavements in these states. 

Then, the ILLI-PAVE finite element program, extensively tested and validated for 

over three decades, was used as an advanced structural model for solving deflection 
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profiles and responses of the mainly identified typical Full-Depth Asphalt Pavements and 

Full-Depth Asphalt Pavements on Lime Stabilized Soils. Pavement deflection basins 

were created by the ILLI-PAVE FE runs under the standard 9,000-lb FWD loading. 

Pavement deflection and response databases established from the ILLI-PAVE FE 

solutions in this manner covered all combinations of the different pavement geometries, 

layer thicknesses, and layer moduli. 

Using these databases, forward calculation ANN models were developed.  

Different ANN model network architectures were searched and trained to determine the 

optimum architectures that best captured the behavior of the these flexible pavement 

sections. In each case, a portion of the ANN model training data was separated as an 

independent testing set to check the performance of the trained ANN architecture.  

Several different network architectures were also trained using different number of input 

parameters. These network architectures were designed for directly predicting the 

deflections on top of asphalt layer under FWD loading.  

The framework SOFTSYS, which stands for Soft Computing Based Pavement 

and Geomaterial System Analyzer, was developed as a new pavement analyzer to 

perform both forward and backcalculation analyses by the hybrid use of GA and ANN 

models thus enabling full-depth asphalt pavement analyses without knowing the HMA 

layer thickness. SOFTSYS performances were needed to be validated with actual field 

data. For this purpose, Ground Penetrating Radar (GPR) was selected as the most reliable 

way of determining layer thicknesses of medium to long stretches of field pavement 

sections. In addition, construction thickness data were also required to determine the 

thicknesses of in-service pavements. The variability in the thickness as well as other 

pavement properties was a critical issue. Therefore, along with the FWD testing, GPR 

testing was also conducted to obtain pavement thickness data. The SOFTSYS thickness 

predictions were then successfully validated through comparisons with the GPR test 

results and the thickness data from pavement section construction.  

Only limited full-depth asphalt pavement sections were available in the Federal 

Highway Administration’s Long Term Pavement Performance (LTPP) database. Two 
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such pavement sections from states of Indiana and Illinois were used to further verify 

applicability of SOFTSYS approach. The SOFTSYS estimations proved to be successful 

in estimating design thicknesses for both of these sections.  

5.2 Conclusions 

The performances of the developed surrogate ANN structural models (forward 

models) were well above satisfactory; i.e., these ANN models could be used in lieu of 

finite element analyses for the quick and accurate predictions of the surface deflections 

and the critical responses of all types of full-depth flexible pavements found/constructed 

in Illinois, Indiana and Ohio. The results of pavement structural modeling with the ILLI-

PAVE FE program proved that improvements due to the constructed lime stabilized 

subgrade soil layer had to be captured separately in the analyses since significant 

differences were found between the critical pavement responses of full-depth pavements 

on unmodified subgrade and lime stabilized subgrade.  Therefore, for correctly modeling 

the pavement response and behavior with the lime stabilized subgrade soil layer, separate 

forward analysis approaches were developed to accurately predict pavement deflection 

profiles and pavement critical responses under FWD loading. 

Thickness variability was a real issue in the field, and destructive pavement 

coring was not always a viable option to determine layer thickness. The SOFTSYS, Soft 

Computing Based Pavement and Geomaterial System Analyzer, framework developed as 

a software tool was used successfully to backcalculate the layer moduli and the HMA 

thicknesses of the full-depth asphalt pavements analyzed.  SOFTSYS was shown to work 

effectively with the synthetic data obtained from ILLI-PAVE FE solutions. The very 

promising SOFTSYS results obtained indicated average absolute errors (AAEs) on the 

order of 6% and 9% for the HMA thickness estimation for full depth pavements and full 

depth pavements built on lime stabilized soil layers.   

The field validations of SOFTSYS with Staley Road FWD data in Illinois also produced 

meaningful results. Higher deflection values correlated well with the thinner 

backcalculated HMA thicknesses. In addition, the thickness data obtained from GPR 
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testing matched reasonably well with the SOFTSYS results although in some locations 

the maximum difference between the two results was up to 3 in. The variations of HMA 

thickness observed were attributed to variations in the FWD data. The data obtained from 

GPR also indicated that the constructed HMA thicknesses were generally greater than the 

design thickness (by approximately 1 in.) although there were sections that were even 

thinner than the design thickness. The thickness data from the field were deemed to be 

essential to calibrate the GPR test results.  In addition, the validations of SOFTSYS with 

LTPP design data proved that proper calibration of parameters is a must to obtain reliable 

results from the SOFTSYS methodology. 
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